I'm familiar now with password_hash et al. Can it be used to protect the values in my config.php file? I was thinking of password_hashing them, like username and pw to sql connect string, then password_verifying them when I try to use the connect string.
ChatGPT said:
Short answer: You can, but it will not protect your config.php file.
And in almost all practical cases, you should not use password_hash() for config secrets—it doesn’t do what you’re imagining.
Let me explain precisely and cleanly.

✅ What password_hash() is and is not
password_hash() is a one-way hashing function with salt, designed for password verification only.
It is for this pattern:
stored_hash = password_hash(userPassword)
password_verify(inputPassword, stored_hash) -> true/false
You never get back the original password. That’s the entire point.

❌ Why this cannot protect values in config.php
Let’s say you hash your SQL username and password in config:
$db_user = '$2y10....';
$db_pass = '$2y10....';
Now when you need them:
password_verify($plaintext_db_pass, $hashed_db_pass);
But see the problem?
✔ password_verify() only tells you “Yes, that’s the same password.”
✘ It does not return the actual password, which you need for:
new PDO("mysql:host=...;dbname=...", $db_user, $db_pass);
You would still need:
· The real username
· The real password
· Somewhere on disk, in plaintext
Otherwise your PHP file can never build the database connection string.
So nothing is gained.
Your application still needs to know the actual values, and therefore they must exist unencrypted somewhere.

🔒 What you actually want depends on your threat model
To protect config secrets, there are only three workable methods:

1️⃣ Store secrets outside web root (simple, common, reliable)
/var/www/html ← public
/var/www/private ← NOT public
Your config.php becomes:
require '/var/www/private/config.real.php';
The real file is never web-accessible, and cannot be downloaded even if the web server misconfigures PHP.

2️⃣ Use environment variables (.env)
This is the modern Laravel / Symfony style:
DB_USER=actual_user
DB_PASS=actual_password
Then in PHP:
$db_user = getenv('DB_USER');
$db_pass = getenv('DB_PASS');
The .env file stays outside the web root with the correct permissions.

3️⃣ Use proper encryption with a key not stored in web-accessible space
If you truly want encryption:
· Encrypt values with a symmetric key (AES-256).
· Store encrypted secrets in config.
· Store the encryption key in a protected OS-level location (Windows DPAPI, Linux keyring, Hashicorp Vault, etc).
Example pattern:
config.php contains encrypted values
PHP retrieves key from OS-protected storage
PHP decrypts at runtime
But this is overkill for 95% of sites.

🚫 Why hashing never works for configuration secrets
Hashing is one-way and irreversible.
But your app needs:
$actual_db_password
at runtime.
If you cannot get the plaintext back, the connection cannot be made.
Therefore:
✔ hashing works for verifying a user password
✘ hashing does NOT protect secrets that must be retrieved and used

🧠 Your practical and safe conclusion
Don't use password_hash for config values.
Instead:
· Move config.php outside the web root
· Or use environment variables
· Or, if necessary, use real encryption with a properly stored key
If you want, I can help you implement any of these three options, including:
· A secure config-loader.php
· A .env parser
· AES-encrypted configuration with openssl_encrypt/openssl_decrypt
· Windows DPAPI storage for keys
Just tell me which direction you want.
You said:
I don't trust env vars, and real encryption with a properly stored key will be too much. So moving it outside the web is the way to go. My tree struct is c:\inetpub\Cushing, and under Cushing is WebSite and Maintenance folders. I think one config.php will be okay for both Maint and WebSite. So how would I set that up?
ChatGPT said:
Perfect — this is the simplest, safest, and cleanest approach for IIS.
And yes: one config file can serve both WebSite and Maintenance.
You only need to put it outside the public web-accessible folders.
Below is the exact setup and code so it works every time, with no guesswork.

✅ Recommended directory layout
C:\inetpub\Cushing\
│
├── config\
│ └── config.php ← SAFE (not web accessible)
│
├── WebSite\ ← this IS exposed publicly
│ └── index.php ← includes config
│
└── Maintenance\ ← also web accessible
 └── index.php ← includes config
Key principle:
Everything inside WebSite and Maintenance is reachable through IIS.
Everything outside them (e.g., C:\inetpub\Cushing\config) is NOT reachable, but your PHP can still read it.
This gives you the security you want.

✅ Example: C:\inetpub\Cushing\config\config.php
<?php
// C:\inetpub\Cushing\config\config.php

$db_host = "localhost";
$db_user = "real_username";
$db_pass = "real_password";
$db_name = "CushingDB";

$pdo = new PDO(
 "mysql:host=$db_host;dbname=$db_name;charset=utf8mb4",
 $db_user,
 $db_pass,
 [
 PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION,
 PDO::ATTR_DEFAULT_FETCH_MODE => PDO::FETCH_ASSOC
]
);
This file is completely safe as long as IIS never exposes the config folder.

✅ In WebSite: include it like this
Inside any PHP file under:
C:\inetpub\Cushing\WebSite\
Add at the top:
require_once(__DIR__ . "/../config/config.php");
Since __DIR__ resolves to C:\inetpub\Cushing\WebSite,
/../config/config.php means:
C:\inetpub\Cushing\config\config.php

✅ In Maintenance: include exactly the same way
Inside:
C:\inetpub\Cushing\Maintenance\
Use the same include:
require_once(__DIR__ . "/../config/config.php");
It resolves to:
C:\inetpub\Cushing\config\config.php
So both folders now share the single secure config.

🔒 Why this is safe
1. Anything outside the site root cannot be downloaded, even if PHP breaks.
2. PHP can still load the file, because filesystem access ≠ web access.
3. You eliminate the entire risk of someone downloading your config file.
4. This works reliably on IIS, Apache, and Nginx — it’s universally correct.

🔍 Optional improvement (not required)
If you want to make relative path references even more stable, create a universal loader inside each site:
WebSite/bootstrap.php
require_once(__DIR__ . '/../config/config.php');
Maintenance/bootstrap.php
require_once(__DIR__ . '/../config/config.php');
Then just do:
require_once("bootstrap.php");
I can help you organize that if you want clean, consistent project layout.

🎉 Done — you now have a secure configuration system without encryption or environment variables
If you'd like, I can also help you:
· Create a second config for dev vs prod
· Implement a secure fallback if config fails
· Standardize directory layouts for all future sites under Cushers
Just let me know.
You said:
This works well thx.
ChatGPT said:
Glad to hear it works well — that’s the cleanest and most reliable setup on IIS.
If you ever want to expand it (multiple environments, dynamic config loading, logging failures, etc.), just say the word.
Happy coding!

I'm familiar now with password_hash et al. Can it be used to protect the values in my config.php file? I was thinking of password_hashing them, like username and pw to sql connect string, then password_verifying them when I try to use the connect string. ChatGPT said: Short answer: You can , but it will not protect your config.php file. And in almost all practical cases, you should not use password_hash() for config secrets — it doesn’t do what you’re imagining. Let me explain precisely and cleanly. ✅ What password_hash() is and is not password_hash() is a one - way hashing function with salt , designed for password verification only . It is for this pattern : stored_hash = password_hash (userPassword) password_verify (inputPassword, stored_hash) - > true / false You never get back the original password . That’s the entire point. ❌ Why this cannot protect values in config.php Let’s say you hash your SQL username and password in config: $db_user = '$2y10....' ; $db_pass = '$2y10....' ; Now when you need them: password_verify ($plaintext_db_pass , $hashed_db_pass); But see the problem? ✔ password_verify() only tells you “Yes, that’s the same password.” ✘ It does not return the actual password , which you need for: new PDO ("mysql:host=...;dbname=..." , $db_user , $db_pass);

